قسمت دوم و پايانى

شناورى،وزنمخصوصو ترازوى

غلامحسينتر يـيمى

استادبخشمهيندسىمكانيك،دانشگاهتربيتمدرس
اكنون مقدار معينى طلاى خالص و به همان وزن نقره انتخاب

 جابهجـــا مى كنيم تا بار ديتر ميله به حا حالــت كاملاً الفقى قرار
 اكنون، اكر بخواهيم تر كيب آليازى از طلا و نقره را مشخصص

 اسـتـ. مقدار طلا در آلياز به نسبت عدد مشخص شـد شده توسط وزنه (فاصلة وززنه تا كفه) با آن عددى اسـت كه ده در ابتدا براى طلاى خالص نشان شده، است. تحليل ترازوى ارشـميدس: شــكل بر ار كــهـ طرحى از

$\mathrm{W}_{\mathrm{s}}=\rho_{\mathrm{s}} \mathrm{gV}_{\mathrm{s}}=\gamma_{\mathrm{s}} \mathrm{V}_{\mathrm{s}}$	وزن نقره W_{g}
$\mathrm{W}_{\mathrm{g}}=\rho_{\mathrm{g}} \mathrm{gV}_{\mathrm{g}}=\gamma_{\mathrm{g}} \mathrm{V}_{\mathrm{g}}$	

$\gamma_{\mathrm{g}}^{\mathrm{g}} \mathrm{V}_{\mathrm{g}}=$ حون وزن دو فلز مســاوى انتخاب شده اســت يعنى حجم قطعd نقره $V_{s}>V_{g}$ ن

بيشتر از حجم طلا است.

در قسمتاول اين مقاله با شرح حال خازنى فيزيكدان ون ومنجم

 مى شودو يكى از كاربر دهاى آن مورد تحليل علمى قرار مىگيرد.
F. F. ترازوهاى آبى در آينهُ ميز انالحكمهُ خازنى

 خازنى نامشان را در كتاب خود آورده عبارتانـاند از: ا:رشميدس

خيّام (خيامى) و ابوحاتم اسفزارى.

آنچه در ادامه مى آيد نخست توصيف هر ترازو مطابق با متن
كتاب و سپس تحليل علمى ترازوست.

اولين ترازويى كه خازنى معرفى مى كند، ترازوى منى منسوب به ارشميدس است كه فقط در ميزانالحكمه توصيف شده است و ر رسالأ مستقلى از آن در دسترس نيست
 متشكل از يك ميلأ تيرمانند افقى است كه نيمى اني از آن به سیى بخش تقسيم شده است (شكل ا ار اببينيد). يك حلقئ كشويى
 در طرف مدرّج نصب مىكردد.

توصيــف تــرازو: خازنى بـهـ نــــلـ از رازى مى كويد كه در

 كفه دقيقاً يكسان باشـــد. هر دو كفه بايد بـدكونهاي با با سوهان

 ببينيد). كففٔ مذكور از اين حلقه آويخته مى مشـود. ميل ترازو

اصلى حلقه خواهد بود.

اكنون يك مثقال زر در كفئ متحر ك قرار مىدهيمر و مثقالى
 نمى خورد. سِيس، هر دو كفه را، با با طلا و نقره، در ميان ميان آب فرو
 ترازو بهسمت كفئ طلا متمايل مى شود جرا آنه جر جرم زر از نظر حجم كمتر از جرم نقره اسـت و و آب در آن كفه كه طـي آلا است
 زبانه (علاقه) نزديكتر مى كنيم تاميل ترازي المو كاملاً افقى كردد. در محل استقرار حلقه نشان ب مىنويسيميه و ا را در محل اولئئ حلقه نوشته و حرف ج ر ر ميانه او و ب در در مى كنيمر (شكل ب) . اكنـــن، اتر در تشــخيص مادماى، بين طـــا و و نقرؤ خالص،
 كفئ ثابت مى كذار يم و فلز همبستأه مور دنظر را را در كفئ لغزنده

 طلاى خالص است و اگر بر نقطهاى مانند ج منطبق شد نيمى
 بين او ج بود نقره بيشتر است، و اكر موضع مذكور ميان ج و و ب باشد طلا بيشتر است.

علاوه بر اين، در ابتدا كه وزئه كشــويـى به ميل ترازو آويخته نيسـت، ترازو در تعادل اسـت. با توجه بـه به اينكه كشتاور حوله نقطهٔ o بايد صفر باشد، داريم:
$\mathrm{W}_{\mathrm{g}} \cdot \mathrm{AO}=\mathrm{W}_{\mathrm{s}} \cdot \mathrm{OB} \quad \Rightarrow \mathrm{AO}=\mathrm{OB}=1$
يعنــى دو پله به فاصلة مســاوى از محل تكيهكاه ميل ترازو قرار كرفتهاند. البته، مشــروط بر آنكــه وزن دو كفه نيز با هم برابر باشد.
Vc اكنون، هر دو كفه در آب قرار مى كيرند. اكر حجمه هر كفـ باشد، وزن هر كفه عبارت است از:

$$
\begin{aligned}
& \gamma_{\mathrm{w}} \mathrm{~V}_{\mathrm{s}}
\end{aligned}
$$

در دو عبارت فـــوق دو مقدار نقره، و دو

$$
\begin{equation*}
\gamma_{\mathrm{w}} \mathrm{~V}_{\mathrm{s}}>\gamma_{\mathrm{w}} \mathrm{~V}_{\mathrm{g}} \tag{।乏}
\end{equation*}
$$

بنابراين، وزن كفئ طلا بيشــتر بوده و ميل ترازو بهسمت آن

 در نقطهُ C تعادل برقرار شود. تعادل گشتاور ها ميدهد:

$$
\begin{equation*}
W_{g}^{\prime} \cdot 1=W_{s}^{\prime} \cdot 1+W(1-d) \leftrightharpoons W d=\left(\gamma_{w} V_{g}-\gamma_{w} V_{s}+w\right) 1 \tag{10}
\end{equation*}
$$

 مشـخص مى گَردد. در روابط بالا فرض شد كه دو كفه از از يكى جنس و از هر نظر مشابهاند.

 ماده قطعاً طلا اسـت. اتــر در فاصلؤ بيــن B و C قرار كيرد، تر كيبى از طلاو و نقره است. نسبت اين دو فلز به نسبت در درجات ميان B و C در دو حالت است.

 آن اسـت، در هوا وزن مى كند. در اين وضعيت آبـ آب موجود در در كفd به اندازءٔ حجم جرم واقع در كفه كمتر است.
$\mathrm{W}_{\mathrm{ps}} \cdot \mathrm{l}=\mathrm{W}_{\mathrm{px}} \cdot \mathrm{l}_{\mathrm{x}} \Rightarrow \mathrm{W}_{\mathrm{ps}}=\mathrm{W}_{\mathrm{px}} \cdot \frac{\mathrm{l}_{\mathrm{x}}}{1}$
نسبت 1/1x را میتوان براى تعيين نسبت طلا و نقره در ماده
 به روابط زير توجه شود:
(19) وزن كفئ نقره
$\mathrm{W}_{\mathrm{ps}}=\mathrm{W}_{\mathrm{ws}}+\mathrm{W}_{\mathrm{s}}^{\prime}=\gamma_{\mathrm{w}} \mathrm{V}_{\mathrm{ws}}+\left(\gamma_{\mathrm{s}} \mathrm{V}_{\mathrm{s}} \gamma-\gamma_{\mathrm{w}} \mathrm{V}_{\mathrm{s}}\right)$

اكنون اكر
$\mathrm{I}_{\mathrm{x}}=\mathrm{l} \Rightarrow \mathrm{W}_{\mathrm{px}}=\mathrm{W}_{\mathrm{pg}}\left(1-\frac{\mathrm{a}}{\mathrm{l}}\right) \Rightarrow \mathrm{W}_{\mathrm{x}}=\mathrm{W}_{\mathrm{s}}$
جسم نقرء خالص است؛
$\mathrm{l}_{\mathrm{x}}=\mathrm{l}-\mathrm{d} \Rightarrow \mathrm{W}_{\mathrm{px}}=\mathrm{W}_{\mathrm{pg}} \Rightarrow \mathrm{W}_{\mathrm{x}}=\mathrm{W}_{\mathrm{g}}$
و اگر
جسم طلاى خالص است؛
$1=1^{\prime}\left(1-d<1^{\prime}<1\right)$
و اكر جسم مركب از طلا و نقرهاست.

خـ

 صاف و هموار اسـت و آلت مخروطــى (تنتى مخروطى) نام
 لولهاى خميده متصل شده است بهكوتونهاى كه شكل ناودان به

خود كرفته است.‘‘(شكل 0)

تحليل ترازوى زكريــاى رازى: در ترازوى زكرياى رازى،
 ميل افقى ترازو ثابتِ مى شود (به فاصله DO =1 1) اما كفئ طلا

 در حالت تعادل اســتاتيكى قرار دار د. اكر دو قطعه طـا و و نقره
 اينحالت نيز تعادل اســتاتيكى كماكان برقرار استـ است. شكل ع ع نمودار ترسيم شدة ترازو ر ابراى تحليل نشان میىدهد.

 گرفــتـ. اكنون حلقُّ متصل به كفأ طلا را جابهجا ما مى كنيم تا تا ميل ترازو كاملاً افقى و مجدداً تعادل اســتاتيكى برقرار استـ استا

 پرا آب و حاوى فلزات در در هوا وزن مى شوند. در وضعيت اوليه، كشتاور حول نقطةٔ O به تعادل مىرسد:
$\mathrm{W}_{\mathrm{cg}} \cdot 1=\mathrm{W}_{\mathrm{cs}} \cdot 1$
 هــر دو كفه را انيز پر آب مى كنيم، تعادل اســـاتيكى نيازمند آن است كه:
$\mathrm{W}_{\mathrm{ps}} \mathrm{l}=\mathrm{W}_{\mathrm{pg}}(\mathrm{l}-\mathrm{d})$
$\mathrm{W}_{\mathrm{ps}}=\mathrm{W}_{\mathrm{pg}}\left(1-\frac{\mathrm{d}}{\mathrm{l}}\right)$

كفهٔ نقرة پر شده از آب است.

 برابر مادة مورد نظر كَاشته مى شود و و ماده x د در كفـة طلا قرار

 بنابراين، داريه:

در ترازوى زكرياى رازى،
حجمی، جنس
و وزن هِر دو
كفه دقيَقِا يكى
است. كفـء نقره
به ميل افقى
ترازو ثابت
مى شود اما كفـة
طالمروى بازوى
ميلكمى تواند
بلغزد

 بيرونى و عبدالر حمن خازنى و جداول استخراج شدر شده و مقايسأ

است
در هر حال، براى تكميل بحث و اسـتـفادة خوانندكان، يكى از جداول مرتبط با موضوع اين مقاله مورد برر ســـى و محاسبا

 معادلهاى امروزى آن است كه به به آن افزوده شده است است بيرونى
 انتخاب كرده اســت و با استفاهه از وسيلةٔ مخروطى اختراعـى
 در آب را بهدقت اندازهگيرى كرده كه در جر جدول آمده است. براى محاســبئ وزن مخصوص، نيازي

 اندازهكيرى شده است، از رابطءٔ جبرى زير بددست مى آيد:

$$
\begin{aligned}
& \text { (} \\
& \text { W W }
\end{aligned}
$$

لذا، وزن مخصوص هر فلز را به سادگى از رابطة زير محاسبه مى كنيم:
$\gamma=\frac{1 \cdots \times 7 \mathrm{NOV}}{\mathrm{W}_{\mathrm{w}}}$
 آمده است.
درخصوص جدول (Y) در ارتباط با خطاسـنجّى و يا افزايش دقت، توضيح بايد داد كه برنج آليازثى اســت از از مس و روى برى به
 خازنى به نقل از بيرونى مى گويد كه سيپيدرو، يك آلياز فلزى،
 سرخ است.
همان كونه كه در جدول بيرونــى (خازنى) با مقادير امروز بـــــيار اندكـ و و تماماً محدود
 دستگاهما و دقت آزمايشكـنـندهمان امروزى است. از از همينجا مىتوان بــه ميزان دقت، صحت عمل و روش علمى ابور يحان

هیى برد.
ابوريحــان علاوه بر تكرار آزمايش، از روش معكوس نيز براى
سـنجش دقت روش خود و مقادير بهدسـت آمده اســتفاده

 مقدار آب مذكور به كفه ريخته و با ترازو و وزنههاى معين، وزين

آب مشخص مىشود. چون وزن آب همرحجم فلز معين شــد، مقــدار حجم آنهها
 فلزات را، در تركيب فلزات مركب و نظاير آري آن، يافتـ

 مخصوص آن برابر است با:
$\gamma=\frac{\mathrm{W}}{\mathrm{V}}$
توجه شود كه در رابطهٔ بالا حجم جسم معلوم نيست.

 ترفت. بنابراين، وزن مخصوص جســمـ از رابطهٔ زير بهدسـت مىآيد: $\gamma=\frac{W}{W-W^{\prime}}$

W
$\mathrm{W}^{\prime}=\mathrm{W}-\mathrm{W}_{\mathrm{w}}$
كه W W وزن آب هم حجمه جسم است، كه با ترازو اندازمگيرى

میدهد.
(11]

 اندازهكيرىها، دقيقترين وزن مخصوصها را ا بهدست مىدهده.

جدول r．مقا يسُٔ وزنهاى مخصوص بيرونى و امروزى

وزن مخصوص （امروزى）	وزن مخصوص γ（بيرونى）	وزن آب برحسب	وزن آب اندازهكيرى شده			(امروزى)	نام فلز （كتاب）
			تسو	دانگَ	مثقال		
19／77	19／1．1	ron／so	r	1	\bigcirc	6	j
1r／09	1ヶ／Vリ	$0 .$.	1	r	\checkmark	جيوه	زيبق
11／ 2 ¢	11／70	$01 \mathrm{~N} / 07$	．	\bigcirc	\wedge	سرب	سرب
1．10．	1.1591	$7 \mathrm{ror} / \mathrm{r}$	1	ε	9	نقره	نقره
	N／9．r	vv．／iv	．	r	11		سپيلرو
N／9	N／A	vVN／TV	．	r	11	مس	س
N / ε	N／VT． 9	vav／rv	．	ε	11	برنج	برنج＂
V / A	V／גVを	Nv．／＾乏	r	\bigcirc	IT	آهن	آهن
	v / ε ro	$9 \mathrm{Tr/EI}$	．	ε	ir	قلع	；رصر）

（rv）
 ه．تـرازوى حكمت خازنى همان كونه كه كفته شد كتاب ميزانان الحكمه مشتمل بر هشت مقاله اســت كه اين مقالات به پنجاه باب تاب تفكيك و هر بر باب به

ه－ا．شرح ترازو

 است كه در وســط ضخيمتر انر طراحى شده تا تا مقاومت بيشترى

 خازنى را از متن عربى كتاب نشان مىدهد．

مى كنــد．بدين ترتيـب كه مثلاً قطعات طلاى وزن نشـــده را را

 در آزمايشهاى خود طلا را بهعنوان مرجع فرض كرده وه و وزن

$$
\text { ساير فلزات را نسبت به آن (به مأخذ . . } 1 \text {) مىسنجد. }
$$

 را كه از نظر حجمى برابر صد مثقال طـى طلا است بدانـي متكافى استفاده مى كنيم．بهاعبارت ديگَر، وزن طلا طلا در وزن آب هممحجم آن ضرب شده و تقسيم بر وزن آب همرحجم آب فلز مورد

نظر مىشود، حاصل وزن فلز همحجمم طالا است． رابطُٔ بيرونى（خازنى）را به زبان علمى امروز مىتوان چخنين نوشت：
$\frac{\mathrm{W}_{\mathrm{s}}}{\mathrm{W}_{\mathrm{g}}}=\frac{\mathrm{W}_{\mathrm{wg}}}{\mathrm{W}_{\mathrm{ws}}} \Rightarrow \mathrm{W}_{\mathrm{s}}=\mathrm{W}_{\mathrm{g}} \cdot \frac{\mathrm{W}_{\mathrm{wg}}}{\mathrm{W}_{\mathrm{ws}}}=\mathrm{W}_{\mathrm{g}} \cdot \frac{\mathrm{V}_{\mathrm{g}}}{\mathrm{V}_{\mathrm{s}}}$（r૫）
بهعنوان مثال، وزن نقره هممحجم ．． 1 مثقال طلا بهصورت
زير محاسبه مىشود．

ترازوى حكمت از

 كه إين دقت و
رحّساسيت آرّا
پّديد آوردهاند: بازورى طولانیٍ
تعليقتقريبا بدون اصطكاک ترازو؛ انطباق مركز ثقل بازو و قاب زبانه؛ نزديكى مركز ثقل و بازوى نوسانكننـده و تعليق دوگانه است

ميلادى، در اروپا وزن مخصوص را اندازه مى كرفتند [[ـ] . در اينجا يكى از روشهاى خازنى تحليل علمى مىشود.
 از ترازوى حكمت خازنى در اينجا يكى از روشهاى اندازه

 برقرار و بازوى AB در وضعيت كاملاً الفقى باشد. فرض فرض مى شـود كه تعادل ترازو با فرض پر بر بودن كفة آبى L بر برقرار باشد. (شكل

9, 9 را ببينيد)

وزن طلا را W W
$\mathrm{W}_{\mathrm{g}}=\gamma_{\mathrm{g}} \mathrm{V}_{\mathrm{g}}$
دو كفـــٔه هوايى H و معيار W W در دو انتهاى بازو هســتـند. با توجه به پر بودن كفئ آب براى برقرارى توازن، وزن وزينّ معيار برابر است با:

$$
\begin{equation*}
\mathrm{W}_{1}=\mathrm{W}_{\mathrm{g}}+\mathrm{W}_{\mathrm{w}} \tag{rq}
\end{equation*}
$$

 حالت داريم:

$$
\mathrm{W}_{1}^{\prime}=\mathrm{W}_{\mathrm{g}}+\mathrm{W}_{\mathrm{w}}-\gamma_{\mathrm{w}} \mathrm{~V}_{\mathrm{g}}
$$

كــهـ
 أويخــت و بدين ترتيب وزن آب هممحجم طلا را معين كرد. با معلوم شــدن آن، وزن مخصوص طلا محاسبه

خازنى مى كويد هر چه طول تير بيثــتر باشد، ترازو دقيقتر

 ساخته مى شود كه همواره در آب باشـد

 طرف كفرٔ معيار آويخته مى شوند. هر دو طرف تير افقىى بهدقت درجهابندى مى شود و علامتها طورى حك مى شود كهن نخ يا حلقأك كفهما در آن قرار كير د. وزن

 دو فلزى را تحليل و يا كشف نمود. كفهاى كه میتوانواند در آب

 از تعـادل و توازن ترازو، مقادير مورد نظر مىتوتواند مســتقيماً

 دستخاه ر ا براى موقعيتهاى مختلف نشان مان مى مهد.

دقت ترازوى حكمت: ترازوى حكمت از دقت فوقالعادهاى
برخوردار است. مـهمترين عواملى كه اين دقت و حساسيت را را را پيد آوردهاند،عبارتاند ازين
الف. بازوى طولاٍنى (حداقل r متر ب. تعليق تقر يباً بدون اصطكاك ترازو پ. انطباق مركز ثقل بازو و و قاب زبانهـ ت. نزديكى مركز ثقل و بازوى نوسان كننده
 مىشود. نيز به حركت زبانئ (D) فزونى مىدهد (كه به معناى حساسيت بالاتر است)
ج. دقت فراوان در ساخت و تركيب اجزاى ترازو.

 چابكدست و لطيفصنعت باشد و آن ر ا از سر علوم و معرفت

 ا در . . . • • و وابسته به مقدار حبه) خواهد بود اتر آن را با با دقت ساخته باشند.
لذا، با اين ترازو وزن مخصوص را با دقتى مىتوان اندازه كــرد كه، حداقل هفــت قرن بعد، در قرون هجـــــه و و نوزدهمم
 موضـوع كه وزن ثابت آب كفـٔ آبـى Ww W مناسـبـ ترازو، از روابط حذف كرد رابطهٔ (艹) را را به شكل زير نيز مىتوان نوشت: $\frac{\mathrm{W}_{\mathrm{s}}^{\prime}}{\mathrm{W}_{\mathrm{g}}^{\prime}}=\frac{\mathrm{OD}}{\mathrm{OC}}$
0. اكنون قطعهاى از همبستأ دو فلزى متشكل از طلا و نقره را در نظر بتيريد با وزن Wa. لذا
$\mathrm{W}_{\mathrm{a}}=\mathrm{W}_{\mathrm{g}}+\mathrm{W}_{\mathrm{s}}=\gamma_{\mathrm{g}} \mathrm{V}_{\mathrm{g}}+\gamma_{\mathrm{s}} \mathrm{V}_{\mathrm{s}}$
كــهـ Va =Vg+Vs. قطعه را در كفئه هوايى مى گذاريمه و آن را اوزن مى كنيم. يعنى

$$
\mathrm{W}_{\mathrm{r}}=\mathrm{W}_{\mathrm{a}}+\mathrm{W}_{\mathrm{w}}
$$

 خم مىشود. بنابراين،
$\mathrm{W}_{\mathrm{r}}^{\prime}=\mathrm{W}_{\mathrm{a}}+\mathrm{W}_{\mathrm{w}}-\gamma_{\mathrm{w}} \mathrm{V}_{\mathrm{a}}$
$\mathrm{W}_{\mathrm{a}}^{\prime}=\mathrm{W}_{\mathrm{a}}-\gamma_{\mathrm{w}} \mathrm{V}_{\mathrm{a}} \quad$ وزن ظاهرى قطعه
 در كفأ طلامى كذار يم اگر تعادل برقرار شد، قطعهٔ طلا خالص است؛ در غير اينصورت وزنه را در كفُٔ نقره قرار مىدهيمه اگر اگر

 ك

$$
\mathrm{W}_{\mathrm{r}} \cdot \mathrm{AO}=\mathrm{OB} \cdot\left(\mathrm{~W}_{\mathrm{a}}+\mathrm{W}_{\mathrm{w}}\right)
$$

$\mathrm{W}_{\mathrm{r}} . \mathrm{OC}=\mathrm{OB} .\left(\mathrm{W}_{\mathrm{a}}+\mathrm{W}_{\mathrm{w}}-\gamma_{\mathrm{w}} \mathrm{V}_{\mathrm{a}}\right)$

$$
\mathrm{W}_{\mathrm{r}} \cdot \mathrm{OC}=\mathrm{OB} \cdot\left(\mathrm{~W}_{\mathrm{a}}^{\prime}+\mathrm{W}_{\mathrm{w}}\right)
$$

وزن W تعادل ترازو برقرار شود. نسبت طلا و نقر هـ در همبسته به نسبت نسبت وزنهاى توزيع شده است. داريم:
$W_{r}=W_{r i}+W_{r r}$
$\mathrm{W}_{1} . \mathrm{CO}=\mathrm{W}^{\prime}, . \mathrm{OB}$
(ry)
$\gamma_{\mathrm{g}}=\frac{\mathrm{W}_{\mathrm{g}}}{\mathrm{W}_{\mathrm{wg}}}$

> مىشود:
(FI)
امــا، براى حفظ تعادل از تغيير محــل كفأ طلانيز مىتوان استفاده كرد.
وزن معيار را به كفئ G (كفٔ طلا) مى كذاريم و و آن را آنقدر روى بازوى AO مىلغزانيم تا تعادل برقرار شود. در اين حالت، داريم:

ليلٔ طـــلا را در موقعيت تعادل تثبيـت مى كنيه و روى بازو علامت مى گذاريمه.

بــــهـ وزن تعادل مى كذاريم. داريم:
$\mathrm{W}_{\mathrm{r}}=\mathrm{W}_{\mathrm{s}}+\mathrm{W}_{\mathrm{w}}$

.W ${ }_{1}=W_{\mathrm{r}}$.
६. در اين مرحله، قطعهٔ نقره را در كفئ آب قرار مىدهيمه. به

 قــرار داده و كفه را آنقدر روى بازوى AO جابهجا مى كنيم تا تا تعادل برقرار شود. در اينحالت
$\mathrm{W}^{\prime}=\mathrm{W}_{\mathrm{s}}+\mathrm{W}_{\mathrm{w}}-\gamma_{\mathrm{w}} \mathrm{V}_{\mathrm{s}}$
تعادل لنتَرها مىدهد:
$W_{r} . \mathrm{DO}=\mathrm{W}_{{ }_{r}} \cdot \mathrm{OB}$
AO محــل كفئ نتــره در ايــن وضعيت تعـادل روى بازوى علامت كذار ى مىشود. بـا توجه به اينكه

$\frac{\mathrm{W}_{\mathrm{r}}^{\prime}}{\mathrm{W}_{\mathrm{T}}^{\prime}}=\frac{\mathrm{OD}}{\mathrm{OC}}$
با توجه به اينكه, ' انتظار مىرود.

 اكنون موقعيتهاى طلا و نقره روى بازو مشــخـص مى مشود.
عمل فوق بارها انجام مى شود تا دقت مور نظر نظر حاصل شود. تذكــر: بــا توجــه بــه اينكــه وزنهـــاى ظاهـرى طـــا

$$
\begin{aligned}
& \text { ٪ }
\end{aligned}
$$

ير از آب بكندند و مقدار معلوم
آب بَيرد آب بـــه با بالا برآيد و
ازل ناودان بيـرون آيد و در ريلّ
شود...) (ترج جمهم ميزانر يكى مكمل،
41. Abattouy, pp.
220-221

(ول، ص، مان.

 .or

خويشمى كويد:

 حون عمـود قبـانـن و هر هرحه

 آن عمود زبانهان سازيميم جون

46. Winged

 علم و تمدن در اسطام، ترجمهُ

 ويزانالحكمه، ص كه.

 شــده اســت، كـــه هماكـاكنون
 است، وجود دارد.

